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Abstract. We study the following Bayesian setting: m items are sold
to n selfish bidders in m independent second-price auctions. Each bidder
has a private valuation function that expresses complex preferences over
all subsets of items. Bidders only have beliefs about the valuation func-
tions of the other bidders, in the form of probability distributions. The
objective is to allocate the items to the bidders in a way that provides a
good approximation to the optimal social welfare value. We show that if
bidders have submodular valuation functions, then every Bayesian Nash
equilibrium of the resulting game provides a 2-approximation to the op-
timal social welfare. Moreover, we show that in the full-information game
a pure Nash always exists and can be found in time that is polynomial
in both m and n.

1 Introduction

Combinatorial Auctions. In a combinatorial auction m items M = {1, . . . ,m}
are offered for sale to n bidders N = {1, . . . , n}. Each bidder i has a valuation
function (or valuation, in short) vi that assigns a non-negative real number to
every subset of the items. vi expresses i’s preferences over bundles of items. The
value vi(S) can be thought of as specifying i’s maximum willingness to pay for
S. Two standard assumptions are made on each vi: vi(∅) = 0 (normalization),
and vi(S) ≤ vi(T ) for every two bundles S ⊆ T (monotonicity). The objective is
to find a partition of the items among the bidders S1, . . . , Sn (where Si ∩Sj = ∅
for all i 6= j) such that the social welfare Σivi(Si) is maximized.

The interplay between selfishness and computational optimization in combi-
natorial auctions is well-studied. Each of these aspects alone can be handled in
a satisfactory way: The celebrated VCG mechanisms [19, 3, 10] motivate agents
to truthfully report their private information, and optimize the social-welfare.
The caveat is that this may take exponential time [15, 16] (in the natural pa-
rameters of the problem m and n). On the other hand, if we disregard strategic
issues, it is possible to obtain good approximations to the optimal social-welfare
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in polynomial time, for restricted, yet very expressive special cases of combina-
torial auctions (e.g., combinatorial auctions in which bidders have submodular
valuations, known as combinatorial auctions with submodular bidders [13, 4–7,
20]). It is the combination of the two challenges that proves to be problematic.

Bayesian Combinatorial Auctions. In this paper we approach the problem
of handling selfishness and computational hardness from an old-new perspective:
Harsanyi [11] introduced Bayesian games as an elegant way of modeling selfish-
ness in partial-information settings. In a Bayesian game, players do not know
the private information of the other players, but only have beliefs, expressed by
probability distributions over the different possible realizations of this private in-
formation. In combinatorial auctions this translates to probability distributions
over the possible valuation functions of the other bidders. We are interested in
maximizing the social-welfare in a way that is aligned with the interests of the
different bidders. We ask the following question: Can we design an auction for
which any Bayesian Nash equilibrium provides a good approximation to the op-
timal social-welfare? This question is, of course, an extension of the well known
“price of anarchy” question [12, 17] to Bayesian settings.

Inspired by eBay, we study the simple auction in which the m items are
sold in m independent second-price auctions. This auction induces a game in
which a bidder’s strategy is the m-dimensional vector of bids he submits in the
different single-item auctions, and his payoff is his value for the set of items
he is allocated minus his payments. Unfortunately, in this general setting, some
unnatural problems may arise: Consider the following simple example: m = 1,
n = 2, and the bidders have complete information about each other. Let v1(1) =
1 and v2(1) = 0. Observe that the optimal social welfare is 1 (assign item 1 to
bidder 1). Also observe that if bidder 1 bids 0 and bidder 2 bids 1 then this is
a pure Nash equilibrium with a social-welfare value of 0. Therefore, the price of
anarchy of this full-information game is infinity.

In the above scenario, the second bidder bid for (and eventually got) an
object he was not interested in possessing. However, such a situation is unlikely
to occur in real-life situations, especially if bidders are only partially informed
and are therefore more inclined to avoid risks. To handle this, we adopt the
well-known assumption in decision theory, that the players (bidders) are ex-
post individually-rational. Informally, ex-post individual-rationality means that
bidders play it safe, in the sense that a bidder will never make decisions that
might (in some scenario) result in getting a negative payoff.

Our Results. Our main result is the following: We exhibit an auction (we refer
to as a Bayesian auction) in which essentially all items are sold in a second-price
auction. We prove that any mixed Nash equilibrium for this auction provides a
good approximation to the optimal social welfare.

Theorem: If bidders are ex-post individually-rational, and have submodular
valuation functions, then every (mixed) Bayesian Nash equilibrium of a Bayesian
auction provides a 2-approximation to the optimal social welfare.



A bidder i is said to have a submodular valuation function if for all S, T ⊆M
vi(S ∪T )+ vi(S ∩T ) ≤ vi(S)+ vi(T ). This definition of submodularity is known
(see, e.g., [13]) to be equivalent to the following definition: A valuation function
is submodular if for every two bundles S ⊆ T that do not contain an item j it
holds that

vi(S ∪ {j})− vi(S) ≥ vi(T ∪ {j})− vi(T ).

This last inequality has a natural interpretation as it implies that the bidders
have decreasing marginal utilities (the marginal value of the item decreases as the
number of items a bidder has increases). In fact, our theorem holds even if bid-
ders have fractionally-subadditive valuation functions [6] (defined, and termed
XOS, in [14]), a class of valuation functions that strictly contains all submodular
ones [14, 13].

We stress that this “Bayesian price of anarchy” result is independent of
the bidders’ beliefs. That is, the 2-approximation ratio is guaranteed for any
common probability distribution (“common prior”) over the valuation functions
(we do require the common prior to be the product of independent probability
distributions). This suggests a middle-ground between the classical economic
and the standard computer science approaches: Works in economics normally
assume that the “input” is drawn from some specific probability distribution,
and prove results that apply to that specific one. In contrast, computer scientists
prefer a worst-case analysis that holds for every possible input. We require the
assumption that the input is drawn from some (known) probability distribution
but expect to obtain a good approximation ratio regardless of what it is. We
note that an approach similar to ours was applied to selfish routing problems
in [9, 8]

Open Question: Can a (mixed) Bayesian Nash equilibrium be computed in
polynomial time?

Simple examples show that a pure Bayesian Nash is not guaranteed to exist
in our Bayesian setting4. An interesting special case of the Bayesian game is
the full-information game in which every bidder’s valuation function is known
to all other bidders. We show, that in such full-information games a pure Nash
equilibrium always exists. This is true even if the bidders are not ex-post in-
dividually rational. In fact, it is easy to show that even the optimal allocation
of items can be achieved in a pure Nash equilibrium. So, while the price of an-
archy in this game is infinity (without ex-post individual-rationality), the price
of stability (the social welfare value of the best Nash equilibrium [1]) is 1. How-
ever, optimizing the social-welfare in combinatorial auctions with submodular
bidders in known to be NP-hard [13]. Therefore, we are left with the following
natural question: Can we find a pure Nash equilibrium that provides a good
approximation to the optimal social welfare in polynomial time?

4 In fact, even a mixed Nash equilibrium is not guaranteed to exist unless one dis-
cretizes the strategy space (e.g., only allows bids that are multiples of some small
ε > 0).



We give the following answer for submodular bidders:

Theorem: If bidders have submodular valuation functions then a pure Nash
equilibrium of the complete-information game that provides a 2-approximation
to the optimal social welfare exists and can be computed in polynomial time.

We prove the theorem by showing that the approximation algorithm for
maximizing social welfare in combinatorial auctions with submodular bidders,
proposed by Lehmann et al. [13], can be used to compute the bids in a pure
Nash equilibrium. We note that similar questions have been studied by Vetta
in [18]5.

For the wider class of fractionally-subadditive valuation functions, we provide
a constructive way of finding a pure Nash that provides a 2-approximation via a
simple and natural myopic procedure. This procedure is inspired by the greedy
approximation-algorithm in [4]. Unfortunately, while this myopic procedure does
compute a pure Nash equilibrium in polynomial time for some interesting (non-
submodular) subcases, this is not true in general. We prove that the myopic
procedure may take exponential time by exhibiting a non-trivial construction of
an instance on which this can occur.

Open Question: Can a pure Nash equilibrium that obtains a 2-approximation
to the optimal social-welfare be computed in polynomial time if bidders have
fractionally-subadditive valuation functions?

The proofs omitted due to space limitations can be found in the full version
of the paper.

2 Bayesian Price of Anarchy

In Subsection 2.1 we present the Bayesian setting we explore in this paper,
which we term “Bayesian combinatorial auctions”. In Subsection 2.2 we exhibit
our main result, which is that the Bayesian price of anarchy of Bayesian combi-
natorial auctions is 2.

2.1 The Setting - Bayesian Combinatorial Auctions

The Auction. m items are sold to n bidders in m independent second-price
auctions (with some tie-breaking rule). A bidder’s strategy is a bid-vector bi ∈
Rm

≥0 (bi(j) represents i’s bid for item j). 6 A (pure) strategy profile of all players

5 Vetta considers a general setting in which decisions are made by non-cooperative
agents, and the utility functions are submodular. He proves that in this setting the
price of anarchy is at most 2. The framework discussed there is such that the players’
pure strategies are subsets of a ground set (e.g., the items). This framework is not
applicable to our auction, where the bids play a crucial role.

6 So as to have a finite (discrete) model, we assume that all acceptable bids are multi-
ples of an arbitrary ε. Furthermore, they cannot exceed some maximum value Bmax.



is an n-tuple b = (b1, . . . , bn). We will use the notation b = (bi, b−i), to denote
a strategy profile in which bidder i bids bi and other bidders bid as in b−i =
(b1, . . . , bi−1, bi+1, . . . , bn).

Given a strategy profile b, the items are allocated according to the second
price rule, i.e., every object is sold to the highest bidder at a price equal to the
second highest bid. For technical reasons, to be explained later, in each such
second-price auction with negligible probability the item is randomly allocated
to one of the bidders (who submitted a bid higher than zero). In this case, that
bidder is charged his bid for the item.

For some fixed b we denote by Xi(b) the set of items obtained by player i in
the auction7. For a set S ⊆M, let the sum of the (highest) bids be denoted by

Bids(S, b) =
∑

j∈S

max
k

bk(j),

Bids−i(S, b−i) =
∑

j∈S

max
k 6=i

bk(j),

and
Bidsi(S, bi) =

∑

j∈S

bi(j).

The utility (payoff) of player i is then given by

ui(b) = vi(Xi(b))−Bids−i(Xi(b), b−i).

We make two assumptions about the bidders: ex-post individual-rationality,
and that the vis are fractionally-subadditive. A valuation is fractionally-subaddi-
tive if it is the pointwise maximum of a set of additive valuations: A valuation ai

is additive if for every S ⊆M ai(S) = Σj∈Sai({j}). A valuation vi is fractionally-
subadditive if there are additive valuations A = {a1, . . . , al} such that for every
S ⊆ M vi(S) = maxa∈A a(S). (We will call ak ∈ A a maximizing additive
valuation for the set S if vi(S) = ak(S).)

The class of fractionally-subadditive valuations is known to be strictly con-
tained in the class of subadditive valuations and to strictly contain the class of
submodular valuations [14, 13].

Bayesian Nash Equilibria. For all i, let Vi denote the finite set of possible
valuations of player i. The set of possible valuation profiles of the players is
then V = V1 × . . . × Vn. There is a known probability distribution D over the
valuations V (a common prior). D can be regarded as some market statistics
that is known to all bidders (and to the auctioneer), and specifies their beliefs.
We assume that D = D1 × . . . × Dn is the cartesian product of independent
probability distributions Di: any valuation profile v = (v1, . . . , vn) occurs with
probability D(v) = Πn

i=1Di(vi), where Di(vi) is the probability that bidder i

7 observe that Xi(b) is actually a random variable, but since the event that not all
items are sold in second-price auctions only occurs with very low probability we shall
often refer to Xi(b) as indicating a specific bundle of items.



has the valuation function vi. Let V−i = ×k 6=iVk, D−i = ×k 6=iDk, and v−i =
(v1, . . . , vi−1, vi+1, . . . , vn).

A bidding-function Bi for player i is a function that assigns a bid-vector
bi = Bi(vi) to every valuation function vi ∈ Vi. The reader may find it helpful
to think of Bi as a suggestion made to player i by the auctioneer as to which
bid to submit. An n-tuple of bidding-functions B = (B1, . . . , Bn) is a Bayesian
Nash equilibrium if for every i ∈ [n], and for every valuation function vi, the bid
Bi(vi) maximizes i’s expected utility given that his valuation function is vi, and
that the bid of every other bidder j is Bj(vj), where vj is drawn from Dj . That
is, a Bayesian Nash maximizes i’s expected payoff for any valuation function he
may have, given his beliefs about the other bidders.

Bayesian Price of Anarchy. For a fixed valuation profile of the bidders
v = (v1, . . . , vn), the optimal social-welfare is OPT (v) = maxS1,...,Sn

Σivi(Si),
where the maximum is taken over all partitions of M into disjoint bundles
S1, . . . , Sn. For given D, the (expected) optimal social-welfare SW (OPT ) is the
expectation E[OPT (v)], where v is drawn from D. That is,

SW (OPT ) =
∑

v∈V

D(v)OPT (v)

Given a profile v, every pure strategy profile b induces a social-welfare value
SW (b) =

∑
i∈[n] vi(Xi(b)). For an n-tuple of bidding-functions B = (B1, . . . , Bn),

we denote by SW (B) the expected social welfare E[SW (B1(v1), . . . , Bn(vn))],
where the v = (v1, . . . , vn) is drawn from D :

SW (B) =
∑

v∈V

D(v)SW (B(v)).

We are interested in Bayesian Nash equilibria B for which the ratio SW (OPT )
SW (B)

is small. The Bayesian price of anarchy of a game is

PoA = max
D, B BayesianNash

SW (OPT )

SW (B)
,

that is the maximum of the expression SW (OPT )
SW (B) , taken over all probability

distributions D, and all Bayesian Nash equilibria B (for these probability dis-
tributions). Intuitively, a Bayesian price of anarchy of α means that no matter
what the bidders’ beliefs are, every Bayesian Nash equilibrium provides an α-
approximation to the optimal social-welfare.

Supporting Bids. Due to ex-post individual-rationality, a bidder will never
submit a bid that might result in a negative payoff. Recall that the rules of the
auction dictate that it is possible that a bidder get any subset of the items for
which he submitted his non-zero bids and be charged the sum of these bids.
Hence, a bidder’s bid must uphold the following property:

Definition 1. A bid vector bi is said to be a supporting bid given a valuation
vi, if for all S ⊆M vi(S) ≥ Σj∈Sbi(j).



Recall that the event that not all items are sold in second-price auctions only
occurs with negligible probability. Hence, for simplicity, we shall disregard this
event and prove our theorem for the case that all items are sold in second-price
auctions.

2.2 Bayesian Price of Anarchy of 2

This subsection exhibits our main result. For ease of exposition we prove the the-
orem regarding the Bayesian price of anarchy for pure Bayesian Nash equilibria.
The (more complicated) proof for mixed Nash is omitted due to space limitations
and appears in the full version of the paper. The proof of the theorem exploits
the fractional subadditivity of the valuations via the following lemma:

Lemma 1. Let S be a set of items, and ai be a maximizing additive valuation
of player i for this set, restricted so that ai = 0 on M\S. If i bids according to
ai, while all the others bid according to any pure profile b−i, then

ui(ai, b−i) ≥ vi(S)−Bids−i(S, b−i).

Proof. Let Xi := Xi(ai, b−i) be the set of items that player i is going to get.
Note that if i wins any item j 6∈ S then the maximum bid on this j was 0. Thus
we can assume w.l.o.g. that Xi ⊆ S. Moreover, ai(j) − Bids−i({j}, b−i) ≤ 0
holds for every non-obtained item j ∈ S −Xi. Therefore, we have

ui(a, b−i) = vi(Xi)−Bids−i(Xi, b−i)

≥
∑

j∈Xi

ai(j)−Bids−i(Xi, b−i)

≥
∑

j∈S

ai(j)−Bids−i(S, b−i)

= vi(S)−Bids−i(S, b−i).

Theorem 1. Let D be a distribution over fractionally-subadditive valuations of
the bidders. If B = (B1, . . . , Bn) is a Bayesian Nash, such that each Bi maps

every valuation function vi to a supporting bid (given vi) then SW (OPT )
SW (B) ≤ 2.

Proof. Let v = (v1, . . . , vn) be a fixed valuation profile. We denote by Ov =
(Ov

1 , . . . , Ov
n) the optimum allocation with respect to profile v.

Now for every player i, let ai denote the maximizing additive valuation for
the set Ov

i , (in particular, ai(j) = 0 if j 6∈ Ov
i ). For all i, we consider ai as an

alternative strategy to Bi(vi).
Let us fix a bidder i. Let w−i be an arbitrary valuation profile of all bidders

except for i. We introduce the short notation

X
w

−i

i

def
= Xi(Bi(vi), B−i(w−i)).



Furthermore, for any S ⊆M we will use

Bids
w

−i

−i (S)
def
= Bids−i(S,B−i(w−i)),

resp.

Bidsw(S)
def
= Bids(S,B(w)),

where w = (wi, w−i) is a valuation profile.
Since B is a Bayesian Nash, the strategy Bi(vi) provides higher expected

utility to player i than the strategy ai :
∑

w
−i∈V

−i

D(w−i)ui(Bi(vi), B−i(w−i)) ≥
∑

w
−i∈V

−i

D(w−i)ui(ai, B−i(w−i)).

The utility values on the left-hand-side are

ui(Bi(vi), B−i(w−i)) = vi(X
w

−i

i )−Bids
w

−i

−i (X
w

−i

i ) ≤ vi(X
w

−i

i ).

On the right-hand-side, applying Lemma 1 yields

ui(ai, B−i(w−i)) ≥ vi(O
v
i )−Bids

w
−i

−i (Ov
i ).

By merging the inequalities above, we get
∑

w
−i∈V

−i

D(w−i)vi(X
w

−i

i ) ≥
∑

w
−i∈V

−i

D(w−i)[vi(O
v
i )−Bids

w
−i

−i (Ov
i )]

= vi(O
v
i )

∑

w
−i∈V

−i

D(w−i)−
∑

w
−i∈V

−i

D(w−i)Bids
w

−i

−i (Ov
i )

= vi(O
v
i ) · 1−

∑

w∈V

D(w)Bids
w

−i

−i (Ov
i )

≥ vi(O
v
i )−

∑

w∈V

D(w)Bidsw(Ov
i ).

Here the expected highest bids
∑

w
−i∈V

−i
D(w−i)Bids

w
−i

−i (Ov
i ), and∑

w∈V D(w)Bids
w

−i

−i (Ov
i ) are equal, because D is independent for all bidders.

Finally, Bids
w

−i

−i (Ov
i ) ≤ Bidsw(Ov

i ) obviously holds, since in the latter case we
consider maximum bids over a larger set of players. We obtained

vi(O
v
i ) ≤

∑

w
−i∈V

−i

D(w−i)vi(X
w

−i

i ) +
∑

w∈V

D(w)Bidsw(Ov
i ).

We sum over all i, and then take the expectation over all valuations v =
(v1, . . . , vn) on both sides:

∑

v∈V

D(v)
∑

i∈[n]

vi(O
v
i ) ≤

∑

v∈V

D(v)
∑

i∈[n]

∑

w
−i∈V

−i

D(w−i)vi(X
w

−i

i )

+
∑

v∈V

D(v)
∑

i∈[n]

∑

w∈V

D(w)Bidsw(Ov
i ).



Note that
∑

v∈V D(v)
∑

i∈[n] vi(O
v
i ) = SW (OPT ). Furthermore, we claim

that both summands on the right-hand-side are at most SW (B), so that
SW (OPT ) ≤ 2SW (B), which will conclude the proof. The first summand is

∑

i∈[n]

∑

vi∈Vi

D(vi)
∑

v
−i∈V

−i

D(v−i)
∑

w
−i∈V

−i

D(w−i)vi(X
w

−i

i )

=
∑

i∈[n]

∑

vi∈Vi

D(vi)
∑

w
−i∈V

−i

D(w−i)vi(X
w

−i

i )
∑

v
−i∈V

−i

D(v−i)

=
∑

i∈[n]

∑

vi∈Vi

∑

w
−i∈V

−i

D(vi)D(w−i)vi(X
w

−i

i ) · 1

=
∑

i∈[n]

∑

v∈V

D(v)vi(X
v
−i

i )

=
∑

v∈V

D(v)
∑

i∈[n]

vi(Xi(B(v))) = SW (B).

Finally, the second summand is

∑

v∈V

D(v)
∑

w∈V

D(w)
∑

i∈[n]

Bidsw(Ov
i ) =

∑

v∈V

D(v)
∑

w∈V

D(w)Bidsw(M)

=
∑

w∈V

D(w)Bidsw(M)
∑

v∈V

D(v)

=
∑

w∈V

D(w)Bidsw(M) · 1

=
∑

w∈V

D(w)
∑

i∈[n]

Bidsi(Xi(B(w)), Bi(wi))

≤
∑

w∈V

D(w)
∑

i∈[n]

wi(Xi(B(w))) = SW (B).

The last inequality holds since for all i, the Bi(wi) contains supporting bids for
any set of items including the obtained set Xi(B(w)).

A simple example shows that even in the full-information setting, this Bayesian
price of anarchy result is tight.

3 Computing Pure Nash Equilibria

In this section we consider the following full-information game: The m items are
sold to n bidders with fractionally-subadditive valuation functions in m inde-
pendent second-price auctions. The players’ valuation functions are assumed to
be common knowledge.



In Subsection 3.1, we show that a pure Nash that provides a good approxima-
tion to the social welfare always exists in such games and provide a constructive
way of finding one. In fact, we also prove that the price of stability [1] is 1, i.e.
the optimum can always be achieved in a Nash equilibrium.

In Subsection 3.2 we show that if bidders have submodular valuation func-
tions then such a pure Nash can be reached in polynomial time.

3.1 Fractionally-Subadditive Valuation Functions

Despite the fact that (as shown in the Introduction) some Nash equilibria may
fail to provide good approximation to the social-welfare, we present a construc-
tive way for finding a pure Nash that yields a 2-approximation. We introduce
a natural procedure we call the Potential Procedure which always reaches
such an equilibrium. The Potential Procedure is a simple myopic procedure
for fractionally-subadditive bidders8.

For every i let Ai = {ai
1, ..., a

i
li
} be a set of additive valuations such that

for every S ⊆ M vi(S) = maxa∈Ai
a(S). Recall that since vi is fractionally

subadditive such Ai must exist. Informally, the Potential Procedure simply
starts with some arbitrary supporting bids (corresponding to some maximizing
additive valuations) and let players best-reply, one by one, to the bids of other
players by switching to new supporting bids.

The Procedure:

1. Initialize b∗i (j)← 0, Si ← ∅, rj ← 0, for i = 1, . . . , n and j = 1, . . . ,m.
2. While there is a bidder i such that Si 6= arg maxS⊆M (vi(S)−Σj∈(S\Si)rj):

(a) Let T = arg maxS⊆M (vi(S) − Σj∈(S\Si)rj). Let a ∈ Ai be such that
vi(T ) = a(T ).

(b) Set b∗i (j)← 0 and rj ← 0 for all j ∈ Si.
(c) Set b∗i (j)← a(j) for all j ∈ T . Set rj ← a(j) for all j ∈ T .
(d) Set Si ← T .
(e) For all k 6= i set Sk ← Sk\Si, and set b∗k(j)← 0 for all j ∈ Si.

3. Output b∗ = (b∗1, . . . , b
∗
n).

Observe that in the definition we do not require a(j) ≥ rj in lines (a)–(c)
(i.e., that rj increase). However, this follows from the fact that T maximizes
vi(S) − Σj∈(S\Si)rj . We use a potential-function argument and the fractional-
subadditivity of the bidders to show that the Potential Procedure eventu-
ally converges to a “good” pure Nash.

Theorem 2. If the valuation functions are fractionally subadditive, then the
Potential Procedure converges to a pure Nash equilibrium that provides a
2-approximation to the optimal social-welfare.

8 This procedure requires bidder i to be able to determine which bundle he would
prefer most, given a vector of per-item payments r = (r1, ..., rm). That is, to declare
a bundle S for which vi(S) − Σj∈Srj is maximized. This type of query is called a
demand query and is very common in combinatorial auctions literature (see, e.g., [2,
4, 6, 7]).



We note that the proof shows that even the optimal social-welfare can be
obtained in a pure Nash equilibrium and so the price of stability is 1. So, we
have a natural procedure, that is essentially a best response sequence of the
players, that leads to a pure Nash equilibrium. But, how long will it take the
Potential Procedure to converge? A non-trivial construction shows that
unfortunately the worst case running time is exponential in n and m.

Theorem 3. There is an instance with 2 bidders, each with a fractionally-
subadditive valuation function, on which the Potential Procedure converges
after Ω(2m) steps.

Theorem 3 leaves us with two interesting open questions: First, will the Po-

tential Procedure converge in polynomial time if the valuation functions are
submodular? Second, does the Potential Procedure always run in time that
is polynomial in the size of the sets of additive valuations that underlie every
fractionally-subadditive valuation? An affirmative answer to this question would
imply that the Potential Procedure runs in polynomial time if the bidders
have fractionally-subadditive valuations encoded in a bidding language (see [14,
13, 4, 5]). We note that in the instance in the proof of Theorem 3 the size of the
sets of additive valuations was exponential n and m.

3.2 Submodular Valuation Functions

In this subsection, we focus on submodular valuation functions. We show that
one can find, in polynomial time, a pure Nash equilibrium that also satisfies the
premises of Theorem 1. The procedure we present exploits the algorithm due to
Lehmann et al. [13]. This procedure, which we will call the Marginal-Value

Procedure, therefore provides a 2-approximation to the optimal social welfare.

The Procedure:

1. Fix an arbitrary order on the items. W.l.o.g. let this order be 1, . . . ,m.
2. Initialize Si ← ∅, and rj ← 0, for i = 1, . . . , n, and j = 1, . . . ,m.
3. For each item j = 1, . . . ,m:

(a) Let i = arg maxt∈N vt(St ∪ {j})− vt(St). Set Si ← Si ∪ {j}.
(b) Set rj ← maxt∈N vt(St ∪ {j})− vt(St).

4. For every bidder i set b∗i (j)← rj for all j ∈ Si and b∗i (j)← 0 for all j /∈ Si.
5. Output b∗ = (b∗1, ..., b

∗
n).

Observe, that the resulting n-tuple of bid-vectors b∗ is such that for each item,
only one bidder offers a non-zero bid for that item. This is due to the fact that
we are dealing with a complete-information setting (intuitively, if a bidder does
not win an item he might as well not bid on it). Also notice that the Marginal-

Value Procedure only requires m rounds and so ends in polynomial time.

Theorem 4. If the valuation functions are submodular then a pure Nash equi-
librium that provides a 2-approximation to the optimal social-welfare can be com-
puted in polynomial time.
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